A Fast Symbolic Transformation Based Algorithm for Reversible Logic Synthesis
نویسندگان
چکیده
We present a more concise formulation of the transformation based synthesis approach for reversible logic synthesis, which is one of the most prominent explicit ancilla-free synthesis approaches. Based on this formulation we devise a symbolic variant of the approach that allows one to find a circuit in shorter time using less memory for the function representation. We present both a BDD based and a SAT based implementation of the symbolic variant. Experimental results show that both approaches are significantly faster than the state-of-the-art method. We were able to find ancilla-free circuit realizations for large optimally embedded reversible functions for the first time.
منابع مشابه
Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملA Transformation Based Algorithm for Ternary Reversible Logic Synthesis using Universally Controlled Ternary Gates
In this paper a synthesis algorithm for reversible ternary logic cascades is presented. The algorithm can find a solution for any reversible ternary function with n inputs and n outputs utilizing ternary inverter gates and the new (quantum realizable) UCTG gates which are a powerful generalization of ternary Toffoli gates and Generalized Ternary Gates [4]. The algorithm is an extension of the a...
متن کاملSynthesis of Reversible Logic
A function is reversible if each input vector produces a unique output vector. Reversible functions find many applications, especially in low power design, quantum computing, optical computing, and nanotechnology. Logic synthesis for reversible circuits differs substantially from traditional logic synthesis and is an active field of research at the moment. In this paper, we present the first pr...
متن کامل